A DSS approach for heterogeneous parallel machines scheduling with due windows, processor-\&-sequence-dependent setup and availability constraints

Vincent Giard ${ }^{1}$, Ahlam Azzamouri ${ }^{2}$, Imane Essaadi ${ }^{2}$
${ }^{1}$ OCP chair of Industrial Optimization of EMINES School of Industrial Management, University
Mohammed VI - Polytechnique, BenGuerir, Morroco
Emeritus Professor at University Paris-Dauphine-PSL, Paris, France
vincent.giard@dauphine.fr
2 PhD students at l'EMINES School of Industrial Management \{ahlam.azzamouri, imane.essaadi\}@emines.um6p.org

Abstract

This paper describes the optimization module of a Decision Support System (DSS) devoted to the scheduling in a fertilizer production plant, owning several parallel lines of heterogeneous characteristics, with setup time depending on sequence and lines, and taking into account non-availability constraints.

Keywords: Decision Support System, Optimization, Scheduling, Heterogeneous Parallel Processors, Sequence Dependent Setup, Non-Availability Constraints.

1 Introduction

The fertilizer plant of OCP SA is made of several heterogeneous parallel lines; the production of an order implies a cleaning operation if the produced quality differs from the previous one. Currently, the scheduling problem is defined and solved (empirically) locally; this postulates that the solution is feasible because the required inputs are available and the output storages are sufficient. It is not always the case. The proposed DSS is designed to find an optimal solution taking into account its upstream and downstream consequences. This DSS is analyzed in Giard et al. [41]. This paper is centered on the description of the scheduling optimization problem that takes into account simultaneously several characteristics generally studied separately. Two models are designed. The first one allows to find quickly an optimal solution respecting all local constraints and the DSS examines its upstream and downstream implications to allow, if necessary, for a reformulation of the problem. The second one adds relations taking into account, upstream and downstream constraints in its formulation; its size implies that it can be only used for small problems. Then, the DSS privileges the first model and submit a MILP problem to solve that will be modified if its optimal solution is infeasible due to upstream and downstream constraints (relaxed in model 1). Due to space constraints, the DSS is not presented here.

The literature review is presented in section 2 and the two models are described in section 3

2 Literature review

We have analyzed 40 recent articles published in the best journals, by using an analysis grid organized along five axes. This analysis is summarized in table 2 whose last line shows the characteristics retained simultaneously in our approach.

Characteristics of processors. The production system is made of parallel processors. They can be identical, if any job can be processed by any machine with the same
production time, or heterogeneous, in the opposite case. The availability of those processors may be permanent or not (preventive maintenance...); at the beginning of the schedule, all processors may be available or not (orders in progress).

Characteristics of jobs. Jobs can be all available to be launched when schedule starts, or not (progressive arrivals). In both cases, the characteristics of all jobs are known. Due dates constraints may have to be met (through upper bounds or time windows) or not considered. Preemption may be authorized or not. In some papers, automatic splitting of the ordered quantity is integrated. The consequences of the solution, upstream and downstream of the supply chain, may imply the introduction of additional constraints in the problem definition

Characteristics linked simultaneously with jobs and processors. Heterogeneity implies differences of production times and the impossibility, for some processors, to treat some productions. Setup times, where applicable, may depend on the sequence and/or the processor.

Optimization criteria. Few optimization criteria use an economic point of view; most relate to efficiency (makespan..). Due to lack of space, this aspect is not considered here.

Paper's aims. A scientific paper is written with a specific aim. Three categories of targets can be identified: the numerically-oriented ones (new algorithm to solve a specific class of problems, analysis of the limits of existing algorithm...); the modeloriented ones (new formulation of a complex problem, sometimes preceded by a representative case study or followed by a small academic case study used to illustrate problem formalization); another category, not encountered in the surveyed papers, is description-oriented, devoted to explanation of complex, real situations.

3 Problem formulation

A set ${ }^{\circ}$ of O orders ($o=1 . . \mathrm{O}$) must be scheduled on several L non-identical parallel lines $(l=1 . . \mathrm{L}, \mathrm{L}>\mathrm{O})$. The L first orders $(o=1 . . \mathrm{L})$ are currently in progress at the beginning of the scheduling problem, as they were launched before; they define the set ' ${ }^{\prime}$ '. The ($\mathrm{O}-\mathrm{L}$) following orders $(o=\mathrm{L}+1 . . \mathrm{O})$ are the new orders to be scheduled; they define the set " O ". L fictitious orders are added, one per line $(o=\mathrm{O}+1 . . \mathrm{O}+\mathrm{L})$, to be the last scheduled order on each line (they act like fictitious tasks in the classic MILP formulation of the project scheduling problem); the set ${ }^{\prime} \mathrm{O}$ " ($o=\mathrm{L}+1 . . \mathrm{O}+\mathrm{L}$) is made of the fictitious and new orders.

Table 1. Example of definition of a set of orders (with $\mathrm{L}=2$ and $\mathrm{O}=7$)

		Orders to launch or fictitious order ' O "'						
orders in progress or to launch ${ }^{\circ} \mathrm{O}$								
orders in progress ' ${ }^{\prime} \mathrm{O}^{\prime}$		new orders to launch ${ }^{\prime} \mathrm{O}^{\prime \prime}$					fictitious orders	
1	2	3	4	5	6	7	8	9

Table 2. Main characteristics of the analyzed papers

In MILP, time is defined with periods (e.g. hours) and not with dates. As nonavailability periods are planned in the lines (mainly due to maintenance...), the absolute period index $p(p=1 . . \mathrm{P})$ must be replaced by the relative period index $\pi_{l p}$ which depends on the line (see example in Table 3). Its use is mandatory in case of order due dates, taken into account in our models, and if there are time constraints on some inputs and/or some outputs. In absence of non-availability periods, $\pi_{l p}=p, \forall l$. Work interrupted by maintenance can be resumed without changing its total processing time.

Table 3 Example of definition of relative time

Two models are introduced. In both models, the orders inherit information from the references to produce: the Boolean parameter $\beta_{l j}=1$ if the output reference r required by order j (information given by table R_{j}) can be produced by line l; production rate $\omega_{l j}$ of order j on line l copies that of reference r on line l; setup times (and setup costs) involved by a change of output reference from one order to the following one on the same line, are added to the processing time $\varphi_{l j}$ to give the production time $\theta_{l i j}$ (and production cost $\gamma_{l i j}$) of order j following order i on line l. This transformation simplifies the two versions of our scheduling model.

- In model 1, the binary decision variable $x_{l i j}=1$ if order $j\left(j \in \mathbb{O}_{0^{\prime \prime}}\right)$ is processed on line l just after order $i(i \in \mathbb{O})$; in this formulation, time is indirectly addressed through precedence constraints in production (relation (9)). The variable $x_{l i j}$ exists only if $\beta_{l i}=1$ and $\beta_{l j}=1$. Relation (1) defines the predicate \mathscr{H}_{1} associated with the set of the decision variables $x_{l i j}$ that makes sense. This is very helpful when using Algebraic Modeling Languages (AML), like Xpress-IVE or GAMS.
- In model 2, the binary decision variable $x_{l i j p}=1$ if order $j\left(j \in \sigma^{\prime \prime \prime}\right)$ is processed on line l just after order $i(i \in \mathbb{O})$, the last production period being p. Relation (2) defines the predicate $\mathscr{\mathscr { L }} / 2$ associated with the set of the decision variables $x_{l i j p}$ that makes sense. Note that it includes the due date bounds.
$l, i, j, p \mid i \neq j \wedge i \in \widetilde{O}_{\mathrm{O}} \wedge j \in \widetilde{O}_{\mathrm{O} "} \wedge \beta_{l i}=1 \wedge \beta_{l j}=1 \wedge \mathrm{I}_{l j} \leq \pi_{l p} \leq \mathrm{S}_{l j} \Rightarrow \not \mathscr{Z}_{2}=$ True
A new or fictitious order $j\left(j \in{ }^{\circ}{ }^{\prime \prime \prime}\right)$ is allocated to a unique line $(l=1 . . \mathrm{L})$. An order in progress at the beginning of the scheduling period $\left(j \in \mathbb{C}_{0^{\prime}}\right)$ cannot be followed by more than one new order. This is enforced by relations (3) for model 1 and (4) for model 2.

$$
\begin{align*}
& \forall i \in \widehat{O}^{\prime \prime}, \sum_{l, j, p \mid, \pi_{2}=T r u e} x_{l i j \pi_{l p}}=1 ; \forall i \in \widetilde{O}^{\prime}, \sum_{l, j, p \mid /_{2}=T r u e} x_{l j \pi \pi_{l p}} \leq 1 \tag{3}
\end{align*}
$$

The last period of production of order j is its delivery date y_{j}. This date is bounded by lower and upper dates $\left(\mathrm{L}_{l j}\right.$ and $\left.\mathrm{U}_{l j}\right)$ that are defined with the relative calendar of line l.

These constraints are enforced for the new orders (${ }^{\circ}{ }^{\prime \prime}$) in model 1 by relation (5) and, in model 2, by relation (2) which restrains the scope of variable $x_{l i j p}$. Note that the delivery dates of the orders in progress are already known $\left(\forall j \in{ }_{O^{\prime}}, y_{j}=\mathrm{L}_{j j}=\mathrm{U}_{j j}\right)$.

$$
\begin{equation*}
\forall j \in \sigma_{0^{\prime \prime}}, \sum_{l, i, j \mid /_{1}=T r u e} \mathrm{~L}_{l j} \cdot x_{l i j} \leq y_{j} \leq \sum_{l, i, j \mid / /_{1}=T r u e} \mathrm{U}_{l j} \cdot x_{l i j} \tag{5}
\end{equation*}
$$

A new order j produced on line l must have a predecessor i (in progress or new) produced on the same line. Relation (6) for model 1 and (7) for model 2 enforce order i to be produced on line l if $x_{l i j}=1($ model 1$)$ or $\sum_{p} x_{l i j \pi_{l p}}=1($ model 2$)$.

$$
\begin{align*}
& \forall j \in \widetilde{O}^{\prime \prime} \wedge \forall l \mid \beta_{l j}=1, \sum_{k \in \bigodot_{\mathrm{O}} \mid k \neq j \wedge \beta_{l k}=1} \sum_{p \mid \mathrm{L}_{l j} \leq \pi_{l p} \leq \mathrm{U}_{l j}} x_{l k j \pi_{l p}}= \tag{6}\\
& \sum_{h \in \in_{\mathrm{O} \mid}^{\prime \prime} \mid h \neq j \wedge \beta_{l h}=1} \sum_{p \mid \mathrm{L}_{l j} \leq \pi_{l p} \leq \mathrm{U}_{l j}} x_{l j h \pi_{l p}} \tag{7}
\end{align*}
$$

Relations (8) for model 1 and (9) for model 2 prevent order j to be produced as long as the production of order i is in progress, when both orders are produced on the same line. In these relations, the number P of periods plays the role of the "big M" constant.

$$
\begin{align*}
& \forall i \in \widetilde{O}^{\circ}, j \in{\widetilde{O^{\prime \prime}}} \mid i \neq j, y_{j}-y_{i} \geq \sum_{l, p \mid /_{2}=T r u e} \theta_{l i j} \cdot x_{l i j \pi_{l p}}-\mathrm{P} \cdot\left(1-\sum_{l, p \mid \pi_{2}=T r u e} x_{l i j \pi_{l p}}\right) \tag{8}
\end{align*}
$$

Relations (10) to (12) are specific to model 2. Relation (10) links variables y_{j} and $x_{l i j \pi_{l p}}$ in model 2. Relation (11) defines the total consumption C_{p} during period p of the considered input; it is a linear expression of the decision variables and uses the consumption rate $\mathrm{q}_{l j}$ of order j on line l (null if $\Psi_{l p}=1$, see table 3). C_{p} is calculated as the sum of the consumption of orders in progress and of new orders. Its use will be seen below.

$$
\begin{align*}
& \forall j \in \widetilde{\mathrm{O}}^{\prime \prime}, y_{j}=\sum_{l, i, p \mid \pi_{2}=T r u e} \pi_{l p} \cdot x_{l i j \pi_{l p}} \tag{10}\\
& \forall p, C_{p}=\sum_{l, j \in \subset_{o}, l=j \wedge \Psi_{l p}=0 \wedge \pi_{l p} \leq \mathrm{U}_{j}} \mathrm{q}_{l j}+ \\
& \sum_{l, j \in \check{\mathrm{O}}^{\circ} \mid \beta_{l j}=1 \wedge \Psi_{l p}=0 \wedge \pi_{l j} \leq \mathrm{U}_{j}} \mathrm{q}_{l j} \cdot \sum_{t \geq p, i \in \kappa_{0} \mid \beta_{l i}=1 \wedge i \neq j \wedge \mathrm{~L}_{j} \leq \pi_{t}<\pi_{l p}+\varphi_{l j}} x_{l i j \pi_{l t}} \tag{11}
\end{align*}
$$

Order j relates to quality output r (given by R_{j}); several orders may relate to a same quality r. With production ratio $\mathrm{p}_{l j}$ on line l, the total production $P_{r p}$, during period p, is given by relation (12) which is a linear expression of the decision variables.

$$
\begin{align*}
& \forall p, r, P_{r p}=\sum_{l, j \in \sigma_{0}{ }^{\prime} \mid=j \wedge \mathrm{R}_{j}=r \wedge \Psi_{l p}=0 \wedge \pi_{l p} \leq \mathrm{U}_{j}} \mathrm{p}_{l j}+ \tag{12}\\
& \sum_{l, j \in \check{\delta}_{\mathrm{O}} \mid \beta_{l j}=1 \wedge \mathrm{R}_{j}=r \wedge \Psi_{l p}=0 \wedge \pi_{j j} \leq \mathrm{U}_{j}} \mathrm{p}_{l j} \cdot \sum_{t \geq p, i \in \kappa_{0} \mid \beta_{l i}=1 \wedge i \neq j \wedge \mathrm{~L}_{j} \leq \pi_{l l}<\pi_{l p}+\varphi_{l j}} x_{l i j \pi_{l t}}
\end{align*}
$$

The variables C_{p} and $P_{r p}$ may be used in constraints added in model 2 to take into account a possible stockout of the input (depending on its availability) and/or a possible saturation of the stock where the production of quality r is sent (see [13]). These problems may be shown by exploring the consequences of the optimal solution of
model 1, unable to take into account the physical consequences of a schedule, upstream and downstream of the fertilizer plant.

The schedule cost is given by relation (13) for model 1 and (14) for model 2, where $\gamma_{l i j}$ is the cost of producing order j on line l, after order i. These costs does not take into account expenses which must be supported whatever the decision taken.

$$
\begin{align*}
& \operatorname{Cost}_{1}=\sum_{l, i, j \mid / /_{1}=T r u e} \gamma_{l j} \cdot x_{l i j} \tag{13}\\
& \text { Cost }_{1}=\sum_{l, i, j, p \mid / /_{2}=T r u e} \gamma_{a i j} \cdot x_{l i j \pi_{l t}} \tag{14}
\end{align*}
$$

Several schedules may have the same minimum value of Cost $_{1}$. Among them, schedules with the earliest delivery dates are usually preferred. This is obtained when using Cost $_{2}$ given by relation (15) for model 1 and (16) for model 2.

$$
\begin{align*}
& \text { Cost }_{2}=\text { Cost }_{1}+0.01 \cdot \sum_{j \in \mathrm{C}^{\prime \prime}}\left(y_{j}-\sum_{l, i \mid, \pi_{1}=\text { True }} \mathrm{L}_{l j} \cdot x_{l i j}\right) \tag{15}\\
& \text { Cost }_{2}=\text { Cost }_{1}+0.01 \cdot \sum_{j \in \mathrm{C}^{\prime \prime}}\left(y_{j}-\sum_{l, i, j, p \mid, /_{2}=\text { True }} \mathrm{L}_{l j} \cdot x_{l i j \pi_{l t}}\right) \tag{16}
\end{align*}
$$

Let us illustrate model 1 (for an illustration of model 2, see [41]). As in table 1, the scheduling problem deals with 2 lines (with the maintenance program of table 2) and 7 orders. These orders relate to 3 output references $\left(\mathrm{R}_{\mathrm{j}}\right)$. Some of these references cannot be produced on all the lines. Tables 4 give for each order j and each line l, the upper and lower bounds of the due dates $\left(\mathrm{L}_{l j}\right.$ and $\left.\mathrm{U}_{l j}\right)$, the production rates $\mathrm{p}_{l j}$ of the order, the consumption rate $\omega_{l j}$ of the critical input, the processing times $\varphi_{l j}$; the setup time is assumed to be 2 hours, whatever the sequence $i \rightarrow j \quad(i \neq j)$ and whatever the line l where j is produced. The cost function is $\gamma_{l i j}=10 \cdot \varphi_{l j}+10 \cdot \beta_{l i} \cdot \beta_{l j}$.

Tables 4: data of the scheduling problem

$\boldsymbol{\varphi}_{l j}$	$j=1$	$j=2$	$j=3$	$j=4$	$j=5$	$j=6$	$j=7$
Line $l=1$	5	0	12	8	0	6	9
Line $l=2$	0	7	16	0	10	8	12

R_{j} (output)	A	B	C	A	B	C	C

Using criterion (15), optimal solution (illustrated by the Gantt below) is $x_{1,1,4}=x_{1,4,6}=x_{1,6,3}=x_{1,3,8}=x_{2,2,5}=x_{2,5,7}=x_{2,7,9}=1$ (the other decision variables being nil), $\operatorname{Cost}_{2}=574.32$ and $\operatorname{Cost}_{1}=574$. Order 5 cannot start before period 11, which induces a "hole" in the Gantt given in figure 1.

Figures 1: Optimal solution of model 1

4 Conclusion

A prototype of Decision Support System is currently experimented. The model 2 is used only for problems of small size, due to the computations it involves. The solution given for model 1 is completed by the analysis of its downstream and upstream implications to verify its feasibility and, if necessary, to redesign the problem.

5 References

1. Adamopoulos, G. i., Pappis, C. p.: Scheduling under a common due-date on parallel unrelated machines. European Journal of Operational Research 105, 494-501 (1998)
2. Anghinolfi, D., Paolucci, M.: Parallel machine total tardiness scheduling with a new hybrid metaheuristic approach. Computers and Operations Research 34, 3471-3490 (2007)
3. Behnamian, J., Zandieh, M., Ghomi, S.M.T.F.: Due window scheduling with sequence-dependent setup on parallel machines using three hybrid metaheuristic algorithms. International Journal of Advanced Manufacturing Technology 44, 795-808 (2010)
4. Bin Fu, Yumei Huo, Hairong Zhao.: Approximation schemes for parallel machine scheduling with availability constraints. Discrete Applied Mathematics 159, 1555-1565 (2011)
5. Cao, D., Chen, M., Wan, G.: Parallel machine selection and job scheduling to minimize machine cost and job tardiness. Computers \& Operations Research 32, 1995-2012 (2005)
6. Chen, J.-F.: Unrelated parallel machine scheduling with secondary resource constraints. International Journal of Advanced Manufacturing Technology 26, 285-292 (2005)
7. Chen, J.-F., Wu, T.-H.: Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints. Omega 34, 81-89 (2006)
8. De Paula, M.R., Mateus, G.R., Ravetti, M.G.: A non-delayed relax-and-cut algorithm for scheduling problems with parallel machines, due dates and sequence-dependent setup times. Computers and Operations Research 37, 938-949 (2010)
9. Dong-Won Kim, Kyong-Hee Kim, Wooseung Jang, Chen, F. f.: Unrelated parallel machine scheduling with setup times using simulated annealing. Robotics and Computer-Integrated Manufacturing 18, 223-231 (2002)
10. Fang, K.-T., Lin, B.M.T.: Parallel-machine scheduling to minimize tardiness penalty and power cost. Computers \& Industrial Engineering 64, 224-234 (2013)
11. Gabrel, V.: Scheduling jobs within time windows on identical parallel machines: New model and algorithms. European Journal of Operational Research 83, 320-329 (1995)
12. Gacias, B. [b1 b2] (analytic), Artigues, C. [b1 b2] (analytic), Lopez, P. [b1 b2] (analytic).: Parallel machine scheduling with precedence constraints and setup times (English). Computers \& operations research 37, 21412151 (2010)
13. Guinet, A.: Scheduling sequence-dependent jobs on identical parallel machines to minimize completion time criteria. International Journal of Production Research 31, 1579-1594 (1993)
14. Hashemian, N., Diallo, C., Vizvári, B.: Makespan minimization for parallel machines scheduling with multiple availability constraints. Annals of Operations Research 213, 173-186 (2014)
15. Hidri, L., Gharbi, A., Haouari, M.: Energetic reasoning revisited: application to parallel machine scheduling. Journal of Scheduling 11, 239-252 (2008)
16. Jeng-Fung Chen.: Scheduling on unrelated parallel machines with sequence- and machine-dependent setup times and due-date constraints. International Journal of Advanced Manufacturing Technology 44, 1204-1212 (2010)

$6^{\text {th }}$ International Conference on Information Systems, Logistics and Supply Chain
 ILS Conference 2016, June I-4, Bordeaux, France

17. Kim, D.-W., Na, D.-G., Frank Chen, F.: Unrelated parallel machine scheduling with setup times and a total weighted tardiness objective. Robotics and Computer-Integrated Manufacturing, 12th International Conference on Flexible Automation and Intelligent Manufacturing 19, 173-181 (2003)
18. Lee, C.-Y.: Parallel machines scheduling with non-simultaneous machine available time. Discrete Applied Mathematics 30, 53-61 (1991)
19. Lee, H.-T., Yang, D.-L., Yang, S.-J.: Multi-machine scheduling with deterioration effects and maintenance activities for minimizing the total earliness and tardiness costs. International Journal of Advanced Manufacturing Technology 66, 547-554 (2013)
20. Lee, J.-H., Yu, J.-M., Lee, D.-H.: A tabu search algorithm for unrelated parallel machine scheduling with sequence- and machine-dependent setups: minimizing total tardiness. International Journal of Advanced Manufacturing Technology 69, 2081-2089 (2013)
21. Liao, C..-J., Chen, C.-M., Lin, C.-H.: Minimizing Makespan for Two Parallel Machines with Job Limit on Each Availability Interval. The Journal of the Operational Research Society 58, 938-947 (2007)
22. Liao, C.-J., Shyur, D.-L., Lin, C.-H.: Makespan minimization for two parallel machines with an availability constraint. European Journal of Operational Research, Decision Support Systems in the Internet Age 160, 445456 (2005)
23. Lin, S.-W., Lu, C.-C., Ying, K.-C.: Minimization of total tardiness on unrelated parallel machines with sequenceand machine-dependent setup times under due date constraints. International Journal of Advanced Manufacturing Technology 53, 353-361 (2011)
24. Lin, S.-W., Ying, K.-C.: ABC-based manufacturing scheduling for unrelated parallel machines with machinedependent and job sequence-dependent setup times. Computers \& Operations Research 51, 172-181 (2014)
25. Ma, Y., Chu, C., Zuo, C.: A survey of scheduling with deterministic machine availability constraints. Computers \& Industrial Engineering 58, 199-211 (2010)
26. Moon, J.-Y., Shin, K., Park, J.: Optimization of production scheduling with time-dependent and machinedependent electricity cost for industrial energy efficiency. International Journal of Advanced Manufacturing Technology 68, 523-535 (2013)
27. Nait Tahar, D., Yalaoui, F., Chu, C., Amodeo, L.: A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times. International Journal of Production Economics, Control and Management of Productive Systems Control and Management of Productive Systems 99, 63-73 (2006)
28. Obeid, A., Dauze`re-Pe're`s, S., Yugma, C.: Scheduling job families on non-identical parallel machines with time constraints. Annals of Operations Research 213, 221-234 (2014)
29. Pereira Lopes, M.J., de Carvalho, J.M.V.: Discrete Optimization: A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times. European Journal of Operational Research 176, 15081527 (2007)
30. Rocha, P.L., Ravetti, M.G., Mateus, G.R., Pardalos, P.M.: Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times. Computers and Operations Research 35, 1250-1264 (2008)
31. Rodrigues, R. de F., Dourado, M.C., Szwarcfiter, J.L.: Scheduling problem with multi-purpose parallel machines. Discrete Applied Mathematics, Combinatorial Optimization 164, Part 1, 313-319 (2014)
32. Schutten, J. m. j., Leussink, R. a. m.: Parallel machine scheduling with release dates, due dates and family setup times, in: International Journal of Production Economics. Presented at the International Journal of Production Economics, Elsevier, pp. 119-125 (1996)
33. Suk Jeong, Kyung Kim.: Parallel machine scheduling with earliness-tardiness penalties and space limits. International Journal of Advanced Manufacturing Technology 37, 793-802 (2008)
34. Vallada, E., Ruiz, R.: A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research 211, 612-622 (2011)
35. Van Hop, N., Nagarur, N.N.: The scheduling problem of PCBs for multiple non-identical parallel machines. European Journal of Operational Research 158, 577-594 (2004)
36. Weng, M.X., Lu, J., Ren, H.: Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective. International Journal of Production Economics 70, 215-226 (2001)
37. Xi, Y., Jang, J.: Review: Scheduling jobs on identical parallel machines with unequal future ready time and sequence dependent setup: An experimental study. International Journal of Production Economics 137, 1-10 (2012)
38. Young Hoon Lee, Pinedo, M.: Scheduling jobs on parallel machines with sequence-dependent setup times. European Journal of Operational Research 100, 464-474 (1997)
39. Zhao, C., Ji, M., Tang, H.: Parallel-machine scheduling with an availability constraint. Computers \& Industrial Engineering 61, 778-781 (2011)
40. Zhu, Z., Heady, R.B.: Minimizing the sum of earliness/tardiness in multi-machine scheduling: a mixed integer programming approach. Computers \& Industrial Engineering 38, 297-305 (2000)
41. Giard V., Azzamouri A., Essaadi I., Définition d'un SIAD d'ordonnancement sur processeurs parallèles hétérogènes, avec prise en compte de fenêtre de fin de production, de plages d'indisponibilités des processeurs et de temps de lancement dépendant du processeur et de la séquence. Cahier du LAMSADE 369
